On the $\lambda$-invariant of Selmer Groups Arising from Certain Quadratic Twists of Gross Curves

نویسندگان

چکیده

Let $q$ be a prime with $q \equiv 7 \mod 8$, and let $K=\mathbb{Q}(\sqrt{-q})$. Then $2$ splits in $K$, we write $\mathfrak{p}$ for either of the primes $K$ above $2$. $K_\infty$ unique $\mathbb{Z}_2$-extension unramified outside $\mathfrak{p}$. For certain quadratic biquadratic extensions $\mathfrak{F}/K$, prove simple exact formula $\lambda$-invariant Galois group maximal abelian 2-extension field $\mathfrak{F}_\infty = \mathfrak{F} K_\infty$. Equivalently, our result determines $\mathbb{Z}_2$-corank Selmer groups over $\mathfrak{F}_\infty$ large family twists higher dimensional variety complex multiplication, which is restriction scalars to Gross curve multiplication defined Hilbert class $K$. We also exhibit computations associated $K_n$ case when equal $1$; here denotes $n$-th layer $K_\infty/K$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selmer Groups of Quadratic Twists of Elliptic Curves

(1.1) E : y + a1xy + a3y = x + a2x + a4x+ a6 where a1, a2, a3, a4, a6 ∈ Z. Let N(E) denote the conductor of E, j(E) the j-invariant of E, and L(E, s) = ∑∞ n=1 a(n)n −s the Hasse-Weil L-function of E. If E is modular, then let FE(z) = ∑∞ n=1 aE(n)q n ∈ S2(N(E), χ1) be the associated weight 2 cusp form. Here χ1 denotes the trivial Dirichlet character. Throughout, D will denote a square-free integ...

متن کامل

2-selmer Groups of Quadratic Twists of Elliptic Curves

In this paper we investigate families of quadratic twists of elliptic curves. Addressing a speculation of Ono, we identify a large class of elliptic curves for which the parities of the “algebraic parts” of the central values L(E/Q, 1), as d varies, have essentially the same multiplicative structure as the coefficients ad of L(E/Q, s). We achieve this by controlling the 2-Selmer rank (à la Mazu...

متن کامل

Disparity in Selmer ranks of quadratic twists of elliptic curves

We study the parity of 2-Selmer ranks in the family of quadratic twists of an arbitrary elliptic curve E over an arbitrary number field K. We prove that the fraction of twists (of a given elliptic curve over a fixed number field) having even 2-Selmer rank exists as a stable limit over the family of twists, and we compute this fraction as an explicit product of local factors. We give an example ...

متن کامل

the effect of traffic density on the accident externality from driving the case study of tehran

در این پژوهش به بررسی اثر افزایش ترافیک بر روی تعداد تصادفات پرداخته شده است. به این منظور 30 تقاطع در شهر تهران بطور تصادفی انتخاب گردید و تعداد تصادفات ماهیانه در این تقاطعات در طول سالهای 89-90 از سازمان کنترل ترافیک شهر تهران استخراج گردید و با استفاده از مدل داده های تابلویی و نرم افزار eviews مدل خطی و درجه دوم تخمین زده شد و در نهایت این نتیجه حاصل شد که تقاطعات پر ترافیک تر تعداد تصادفا...

15 صفحه اول

Selmer Groups and Quadratic Reciprocity

In this article we study the 2-Selmer groups of number fields F as well as some related groups, and present connections to the quadratic reciprocity law in F . Let F be a number field; elements in F× that are ideal squares were called singular numbers in the classical literature. They were studied in connection with explicit reciprocity laws, the construction of class fields, or the solution of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tokyo Journal of Mathematics

سال: 2023

ISSN: ['0387-3870']

DOI: https://doi.org/10.3836/tjm/1502179379